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Quantum Mechanics-II 

Unit – I 

SCATTERING THEORY 

Scattering amplitude – Cross sections – Born approximation and its validity – Scattering 

by a screened coulomb potential – Yukawa potential – Partial wave analysis – Scattering length 

and Effective range theory for S wave – Optical theorem – Transformation from centre of mass 

to laboratory frame 

Unit – II 

PERTURBATION THEORY 

Time dependent perturbation theory – Constant and harmonic perturbations – Fermi 

Golden rule – Transition probability - Einstein‘s A and B Coefficients – Adiabatic 

approximation – Sudden approximation – Semi – classical treatment of an atom with 

electromagnetic radiation – Selection rules for dipole radiation . 

Unit – III 

RELATIVISTIC QUANTUM MECHANICS 

Klein – Gordon Equation – Charge and Current Densities – Dirac Matrices – Dirac 

Equation – Plane Wave Solutions – Interpretation of Negative Energy States – Antiparticles – 

Spin of Electron - Magnetic Moment of an Electron Due to Spin. 

Unit – IV 

DIRAC EQUATION 

Covariant form of Dirac Equation – Properties of the gamma matrices – Traces – 

Relativistic invariance of Dirac equation – Probability Density – Current four vector – Bilinear 

covariant – Feynman ‘s theory of positron (Elementary ideas only without propagation 

formalism) 

 

 

 



Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

                                                                                  3                                                Quantum Mechanics - II 
 

 

Unit – V 
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Unit – I 

SCATTERING THEORY 

Scattering amplitude – Cross sections – Born approximation and its validity – Scattering 

by a screened coulomb potential – Yukawa potential – Partial wave analysis – Scattering length 

and Effective range theory for S wave – Optical theorem – Transformation from centre of mass 

to laboratory frame 

 

 Scattering for particles moving in three spatial dimensions, with Hamiltonian 

                                                              H = p
2
 / 2m + V (r) 

There are two distinct interpretations for such a Hamiltonian 

We could think of this as the motion of a single particle, moving in a fixed background 

potential V (r). This would be appropriate, for example, in Rutherford’s famous experiment 

where we fire an alpha particle at a gold nucleus. 

 Alternatively, we could think of this as the relative motion of two particles, separated by 

distance r, interacting through the force F = −   V (r). We could take V (r) to be the Coulomb 

force, to describe the scattering of electrons, or the Yukawa force to describe the scattering of 

neutrons. 

 

1.1 Cross sections: 

The simple reflection and transmission coefficients of the one-dimensional problem are 

no longer appropriate. We need to replace them by something a little more complicated.  

 

 

Figure 1.1 Initial trajectory is characterized by the impact parameter b 
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We throw a single particle with kinetic energy E. Its initial trajectory is characterized by 

the impact parameter b, defined as the closest the particle would get to the scattering centre at     

r = 0 if there were no potential.  

The particle emerges with scattering angle , which is the angle between the asymptotic 

incoming and outgoing trajectories, as shown in the Fig. 1.2. By solving the classical equations 

of motion, we can compute   (b; E) or, equivalently, b ( ;E). 

 

 

 

Figure 1.2  Scattering cross section 

 

Now consider a uniform beam of particles, each with kinetic energy E. Consider the 

cross-sectional area, denoted d  in Fig.1.2. We write this as 

d  = b d   db 

The particles within d  will evolve to lie in a cone of solid angle d , given by 

d  = sin  d   d   

where, for central potentials, the infinitesimal angles d , are the same in both these 

formulae. The differential cross-section is defined to be 
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 The left-hand side should be |
  

  
|, but we’ll usually drop the modulus. The differential 

cross-section is a function of incoming momentum k, together with the outgoing angle  . 

 The differential cross-section can be thought of as 

  

  
      

                                                   

                                                      
 

We write this in terms of flux, defined to be the number of particles per unit area per unit time. 

  
  

  
              

             
 

We can also define the total cross-section 

        
  
  

 

Both the differential cross-section and the total cross-section have units of area. The usual 

unit used in particle physics, nuclear physics and atomic physics is the barn, with                         

1 barn = 10
−28

 m
2
.  

The total cross-section is the characterisation of the scattering power of the potential.  

 

1.2 Scattering amplitude: 

The language of cross-sections is also very natural when we look at scattering in quantum 

mechanics. we set up the scattering problem as a solution to the time-independent Schrodinger 

equation, which is 

    
  

  
                        

We will send in a plane wave with energy E which we choose to propagate along the z-

direction. This is just 
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Where E =    k2 
/ 2m. However, after scattering of the potential, the wave doesn’t only 

bounce back in the z direction. Instead, it spreads out spherically, with a phase and amplitude 

which can vary around the sphere. It’s hard to take photographs of quantum wavefunctions, but 

the water waves shown on the right give a good analogy for what’s going on. Asymptotically, as 

r    , this scattered wave takes the form  

                       
    

 
  

The 1/r fall-of follows from solving the free Schrodinger equation; However, there is a 

simple intuition for this behaviour which follows from thinking of |   |
2
 as a probability, 

spreading over a sphere which grows as r
2
 as r     . The 1/r fall-of ensures that this probability 

is conserved. Our final equation for the asymptotic wave function is then 

                                      

The function f (   ) is called the scattering amplitude.  

For the central potentials considered here it is independent of  , so f = f ( ). It is the 3d 

generalisation of the reflection and transmission coefficients. Our goal is to calculate it. 

The scattering amplitude is very closely related to the differential cross-section. To see 

this, we can look at the probability current density 

       
 

  
                 

which obeys      J = 0. For the incident wave, we have 

                                                       = 
    

 
    

This is interpreted as a beam of particles with velocity v = 
    

 
 travelling in the z-

direction. Meanwhile, for the scattered wave we use the fact that 
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This means that, as r     , the flux of outgoing particles crossing an area dA subtended 

by the solid angle d  

                                                     dA = 
    

 
               

The differential cross-section is defined to be the ratio of the scattered flux through d , 

divided by the incident flux. In other words, it is 

  

  
  

            

  

    
 

              

It means that if we can compute the scattering amplitude f ( ), it immediately tells us the 

differential cross-section. The total cross-section is defined, as before, as 

                 

 

1.3 Born approximation and its validity 

A perturbative solution to the Lippmann-Schwinger equation 

                        
                                     -----(1) 

This solution is known as the Born series. 

We write    as a series expansion 

                                                                 
                                 -------(2) 

where we take the leading term to be the plane wave 

                                                                 =       

This series solves (1) if  n obey the recursion relation 
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 Roughly speaking, things will work nicely if the potential V is small, so each successive 

term is smaller than those preceding it. 

The Born approximation consists of taking just the leading order term,    in this 

expansion. (Strictly speaking this is the first Born approximation; the n
th

 Born approximation 

consists of truncating the series at the nth term.) This  

                             
  

  
 

 

  
                

      
    

 
             ----(3) 

                                          q = k – k     

can be thought of as the momentum transferred from the incoming wave to the outgoing wave. i 

to define the momentum of the outgoing wave to be 

                                                                       k’ =  k    

so that q = k − k’. Comparing the Born approximation (3) to the asymptotic form (1), we see that 

the scattering amplitude is simply the Fourier transform of the potential, 

f (   )     (   ) 
  

   
 

  
                

       

           =  
 

   
 

  
        

Note that the scattering amplitude is a function of   and    , They’re in the definition of 

q, with  k · k’ = k
2
 cos  , and the variable , determining the relative orientation as shown in the 

Fig.1.3 

For a central potential V (r) = V (r), the resulting scattering amplitude will be 

independent of  .   

The scattering amplitude is written as f (k, k’) instead of f (   ). 

Finally, the cross-section in the Born approximation is  

                                  
  

  
          

 

   
 

  
                                               ------(5) 
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There’s so Suppose that your potential has some short distance structure on scales   L.  

Then the Fourier transform         is only sensitive to this when the momentum transfer is 

of order q    1/L. This is a manifestation of the uncertainty principle. 

 

Figure 1.3 

 

 

1.4 Coulomb potential -Yukawa potential: 

At long distances, the strong nuclear force between, say, a proton and a neutron is well 

modelled by the Yukawa potential 

V (r) =  
      

 
 

where 1/μ is said to be the range of the force. We can compute the Fourier transform 

using the same kind of contour methods. We have 

        
     

      
 

Writing this in terms of the scattering angle  , we recall that q = k – k’ with k’ = k   , so that 

               

                                                               

                                                               

If we translate from momentum k to energy E =   k
2
/2m, we have the leading order 

contribution to the cross-section for the Yukawa potential given by 
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                         ---------(6) 

This is shown in the left-hand figure (for values A = m = ~μ = 1 and E = 1/4). 

 

a. cross section for the yukawa potential       b.  for the coloumb potential 

Figure 1.4 Yukawa potential 

when μ    0, so that the Yukawa force becomes the Coulomb force. For example, for 

electron-electron or proton-proton scattering, the strength of the Coulomb force is A = e
2
/4    0. 

In this case, the cross-section equation (6) become, 

  

  
    

  

    
    

 

     
 

 
 
 

This is shown in the right-hand figure (with the same values). Note that there is an 

enhancement of the cross-section at all scattering angles, but a divergence at forward scattering. 

 

 1.5 Scattering length and Effective range theory for S wave: 

To compute the amplitude for Rutherford scattering, we don’t need any new conceptual 

ideas. But we do need to invoke some technical results about special functions. This is because 

the solution to the Schrodinger equation can be written as 
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where 1F1   ( a; b; w) is the confluent hypergeometric function, defined by the series 

expansion 

 
 
The only fact we’ll need about the hypergeometric function is its expansion for large |w|. 

For our solution, this is an expansion in 1/(k r −k · r) and so is valid at large distance, but not 

along the direction of the incident beam k. If we take k = k   , we have  

 

where the +. . . are corrections to both terms which are suppressed by 1/k(r − z). This is now very 

similar to our usual asymptotic, but with the corrected phases. The first term describes the 

ingoing wave, the second term the scattered outgoing wave. We can therefore write 

 

where the scattering amplitude is given by 

 

the cross-section is 

  

  
    

   

         
    

 

     
 

 
 
 

This is the same result as using the Born approximation and the same result that we saw 

from a classical analysis. The Coulomb potential is an exception. 
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1.6 Optical theorem: 

The scattering amplitude in partial waves as  

                                                      
    

 
             

                                               -------(1) 

 

The differential cross-section is 
  

  
 = |f( )|2. 

 Using the partial wave decomposition equation (1) we have  

                                 
  

  
 = 

 

                                              

The Legendre polynomials have  orthogonality property 

                                                                    
  

  
 = 

 

    
               -----(2) 

In computing the total cross-section   , we can use the orthogonality of Legendre polynomials 

(2) to write 

                                                                         
  

  

  

  
 

  
    

   
        

 

   

  

               
    

   
               

 

 

We can compare this to our expansion. Using the fact that P (1) = 1, we have 

       
    

 
          

 

 

The total cross-section is given by 

      
    

  
         

This is known as the optical theorem. 
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 The potential causes scattering from the forward direction (   = 0) to other directions. 

Because total probability is conserved, clearly the amount of particles going in the forward 

direction must decrease. However, this decrease in the forward direction must be equal to the 

total increase in other directions – and this is what the total cross section      measures. Finally, 

the amount of decrease in forward scattering is due to interference between the incoming wave 

and outgoing waves, and so is proportional to f (0). 
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Unit – II 

PERTURBATION THEORY 

Time dependent perturbation theory – Constant and harmonic perturbations – Fermi 

Golden rule – Transition probability - Einstein‘s A and B Coefficients – Adiabatic 

approximation – Sudden approximation – Semi – classical treatment of an atom with 

electromagnetic radiation – Selection rules for dipole radiation . 

 

2.1 Time dependent perturbation theory: 

In quantum mechanics, perturbation theory is a set of approximation schemes directly 

related to mathematical perturbation for describing a complicated quantum system in terms of a 

simpler one.  

The basic notion is to use a simple system for which a mathematical solution is known, 

and then adding an additional ‘Perturbing’ Hamiltonian representing a weak disturbance to the 

system. If the disturbance is not too large, then the various physical quantities associated with the 

perturbed system, for example its energy levels and eigenstates, can be expressed as 

‘Corrections’ to those of the simple system.  

These corrections, being small compared to the size of the quantities themselves, can be 

calculated using approximate methods, such as asymptotic series. The complicated system can 

consequently be studied based on the simpler one. 

Time dependent perturbation theory, developed by Paul Dirac, typically explains the 

effect of a time dependent perturbation V(t) applied to a time independent Hamiltonian, H0. 

Since the perturbed Hamiltonian is time dependent accordingly are its energy levels and 

eigenstates. Thus, the goals of time dependent perturbation theory are slightly different from 

time independent perturbation theory.  

Following are the two significant quantities of the time dependent perturbation: 

1. The time dependent expectation value of some observable A, for a given 

initial state. 

2. The time dependent amplitudes of those quantum states that are energy 

Eigen kets (eigenvectors) in the unperturbed system. 
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2.2 General Time Dependent Perturbations 

Assume that the unperturbed energy eigenvalue problem is exactly of the form 

 

To this is added a perturbation that depends on time, ν (t). To solve the 

time dependent problems we use the following time dependent Schrödinger 

equation. 

 

Then we expand   in terms of the eigenfunctions as, 

 

The time dependent Schrödinger equations is then given as, 

 

Now dot  into this equation to get the time dependence of one coefficient. 

 

Assuming that at t = 0, we are in an initial state    and   hence all the other ck are 

equal to zero as  
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Next we calculate the transition rates. Considering that for the first order, all the ck (t) are 

small in comparison to ci (t) = 1 , therefore the sum can be neglected. 

 

 

This equation is used to calculate transition probabilities for a general time dependent 

perturbation. This can also be used as a basis to calculate the transition rates for the specific 

problem of harmonic potentials. 

Assuming again‘t’ is small enough hence the ci  may not have changed much.  Remember 

that, if there is a large energy difference between the initial and the final states, then a slowly 

varying perturbation can average to zero. 

Subsequently we can find that the perturbation may require frequency components that 

are compatible with wni in order to cause transitions. 

If the first order term is zero or higher accuracy is required, then the second order term 

can be calculated. In second order, first a transition is made to an intermediate state    and then 

a transition to   . We simply put the first order into the sum. 
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2.3 Einstein’s A and B Coefficients: 

Let us consider E(v) as the energy density at equilibrium, where v is the frequency of 

photon. If N1 and N2 are the number of atoms in the lower energy state (ground state) and higher 

energy state (excited state) respectively, then we can write, 

                       N1  P12   =   N1  B12  E(v)                                        ----------(1) 

where P12 is the probability of absorption proportional to energy density E(v) and 

B12 is the Einstein’s coefficient of absorption. 

Therefore, we can express the energy state of N2 as follows: 

                      N2  P21 = N2   [  A21   +   B21  E(v)   ]                              ---------(2) 

Where P21 is the probability (stimulated) proportional to energy density E(v) with 

addition to A21, A21 is the Einstein’s coefficient of spontaneous and B21 is the Einstein’s 

coefficient of stimulated emission. 

When thermal equilibrium exists, we can say that the total absorption probability is equal 

to the total emission probability. 

So, from Equations (1) and (2), we have 

                        N1  B12   E(v)   =   N2   [  A21   +   B21  E(v)  ]                  
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                                            E(v) =  

   
   

 
  
  

  
   
   

     
                   ------(3) 

According to Einstein’s assumption, coefficient of stimulated absorption and coefficient 

of stimulated emission are equal, i.e., B12 = B21 = B (say) and if we consider A21 = A (say), then 

the Equation (3) reduces to, 

                                      E(v) =  

 

 

 
  
  

     
                      ---------(4) 

A and B in the above equation are called Einstein’s ‘A’ and ‘B’ coefficients. 

According to Planck’s radiation law, we know that 

                                              E(v) = 
        

    
  
   

  
     

     

                                
 

 
   

        

    
     

(Ratio of coefficients of spontaneous and stimulated emission, i.e., ratio of Einstein’s ‘A’ 

and ‘B’ Coefficient) 

Where h is the Planck’s Constant. 

K is the Boltzman’s Constant. 

c is the Velocity of Light. 

T is the Temperature in Kelvin.    
                            

2.4 Semi – Classical treatment of an atom with electromagnetic radiation:  

Semi-classical physics refers to a theory in which one part of a system is described 

quantum-mechanically whereas the other is treated classically.  

For example, external fields will be constant, or when changing will be classically 

described.  
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In general, it incorporates a development in powers of Planck’s constant, resulting in the 

classical physics of power 0, and the first nontrivial approximation to the power of (–1).  

Thus, there is a clear link between the quantum mechanical system and the associated 

semi-classical and classical approximations, as it is similar in appearance to the transition from 

physical optics to geometric optics. 

Four examples of a semi-classical approximations include: 

WKB approximation: electrons in classical external electromagnetic fields. 

Semi-classical gravity: quantum field theory within a classical curved 

gravitational background (see general relativity). 

Quantum chaos: quantization of classical chaotic systems. 

Quantum field theory: only Feynman diagrams with at most a single closed 

loop are considered, which corresponds to the powers of Planck’s constant. 

The semi-classical radiation theory consists of two elements: the classical Maxwell 

equations that is satisfied by the electric ‘E’ and the magnetic ‘B’ fields, and the ordinary 

quantum mechanics that is based on the Schrodinger equation of a single charged matter particle 

interacting with the electromagnetic field.  

The single particle Schrodinger quantum mechanics can be modified to take into account 

spin or be replaced by the nonrelativistic quantum mechanics of many particles. 

The distribution of energy in the spectrum of radiations of a hot body cannot be explained 

by applying the classical concepts of physics. Max Planck gave an explanation to this 

observation by his ‘Quantum Theory of Radiation’. His theory states that, 

1. The ‘Radiant Energy’ is always in the form of tiny bundles of light called 

‘quanta’, i.e., the energy is absorbed or emitted discontinuously. 

2. Each quantum has some definite energy ‘E’, which depends upon the 

frequency of the radiations as, 

                                                     E = hγ 

Here, E is the energy of each quantum in Joules,  

         γ is the frequency of the radiations in    s
-1

, 

         h is known as Planck’s constant (a fundamental constant), whose value is,                   

        h = 6.626 × 10
-34

 J-s. 
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Also,                                      E = hcω 

                     where w is known as wave number. 

                                       ω  = (1/λ)         m
-1

. 

From these equations, it is evident that  

                                                            γ = c/λ  

                                                               = c. ω 

The energy emitted or absorbed by a body is a multiple of a quantum, i.e., a body cannot 

absorb or emit energy in fractions of quantum. This concept is known as quantization of energy. 
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Unit – III 

RELATIVISTIC QUANTUM MECHANICS 

Klein – Gordon Equation – Charge and Current Densities – Dirac Matrices – Dirac 

Equation – Plane Wave Solutions – Interpretation of Negative Energy States – Antiparticles – 

Spin of Electron - Magnetic Moment of an Electron Due to Spin. 

 

3.1 Klein – Gordon Equation: 

Schrodinger proposed a relativistic form of his non-relativistic equation (at the same time 

when he developed his non-relativistic (NR) equation). Klein and Gordon developed this 

equation at a later time and is known as Klein-Gordon (KG) equation. Schrodinger used the NR 

energy momentum dispersion relation  

              E = p 
2
  /  2m .  

Using the correspondence principle 

              
 

  
 

                                                                                                             ------(1) 

 In                                                E            
  

  
            

we arrive at the Schrodinger equation for free particle. Now extend the same algorithm for 

relativistic particle with energy-momentum relation 

               

So we get the relativistic wave equation 

                                                                                                   -------(2) 

                            
  

                                                          ------(3) 

                         
 

   
  

                      
    

                          -------(4) 
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                  0                           ------(5) 

This equation is known as Klein-Gordon equation.  

The Klein-Gordon equation describes the relativistic dynamics of a scalar particle.  

The plane wave solution of the KG equation is 

                                                                                                                -----(6) 

where N is the normalization constant and energy  

                                       E = ±             

i.e., energy can be both positive and negative. 

Pre-multiply Eq. (4) by φ   (x) to get 

                                 φ   (x)   
 

   
  

                      
    

                        -----(7) 

Now take the complex conjugate of Eq.(4) and post-multiply with φ(x), which gives 

           
 

   
  

                               =   
    

                                       ------(8) 

Eq (7) - Eq (8) gives: 

            
 

   
  

     
 

   
     

                                             -----(9) 

   
 

 
 
 

  
 [ 

   

   
      

  

  
   

    

  
     ]  +       [

  

   
 (                         ) 

  

   
 ( 

                        ) ]        ----(10) 

                                         
 

 
 

 

  
                                                             ------(11) 

                                                                                                         ------(12) 

This is the continuity equation for the Klein- Gordon  equation, where 

                                        
   

   
      

  

  
   

    

  
                               ----(13) 
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 (                         )                       ----(14) 

The continuity equation for Schrodinger equation, ρ is the probability density and         is 

the probability current density. Continuity equation has the interpretation of conservation of 

probability. 

 It tells that if the probability of finding a particle in some region decreases, the 

probability of finding it outside that region increases,  

i.e., there is a flow of probability current so that the total probability remains conserved. 

Since the KG equation also satisfies the same continuity equation, it is natural to interpret ρ as 

the probability density and        as the probability current. 

 

3.2 Dirac Equation: 

The probability density in KG equation depends on energy and becomes negative for 

negative energy. The energy in the expression of ρ appears due to the time derivative in Eq.(12). 

Dirac realised that this is due to the fact that KG equation involves second order time derivative. 

Notice that Schrodinger equation involves first order time derivative, and ρ does not involve any 

time derivative..  

So, if we want to write a relativistic wave equation with positive definite probability 

density, the equation should be first order in time derivative. To be consistent with the Lorentz 

transformations in special theory of relativity, the wave equation with first order time derivative 

must also be first order in space derivatives. So, Dirac wrote the Hamiltonian as 

 

Writing the momentum in differential operator form in the position space, we must have 

the wave equation 

-------(15) 
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Since the above Hamiltonian has to describe a free particle, αi and β cannot depend on 

space and time, since such terms would have the properties of space-time dependent energies and 

give rise to forces.  

Also αi and β cannot have space or time derivatives, the derivatives should appear only in 

pi and E , since the equation is to be linear in all these derivatives. Thus αi , β are some constants. 

For relativistic particle, it must satisfy the relativistic energy momentum relation 

               

i.e., it must satisfy the Klein-Gordon  equation. 

Squaring both sides of Eq. (15), we get 

                                                                                                                   ---(16) 

To satisfy     

               

the above equation must satisfy 

------(17) 

Now if Eq.(16) has to satisfy Eq.(17), then αi (i = 1, 2, 3) and β must satisfy 
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-----(18) 

Clearly, αi and β cannot be ordinary classical numbers, rather they anti commute with 

each other. So, Dirac proposed that they are matrices. The above anticommutation relations can 

be written in the short forms as 

{ αi , αj }  =  0  

{ αi ,   }  =  0  

(The notation { , } is called the anticommutator.) Combining with the fact that αi 
2
  = 1 

we can write 

                                       { αi , αj }  =   2       

If αi and β are matrices, ψ cannot be a single component wave function, it must have 

more than one components that can be written as a vector on which the matrices should operate. 

For Dirac equation, we need four linearly independent matrices satisfying the 

anticommutation relations.  

Since the Hamiltonian is Hermitian, each of the four matrices αi , β must be Hermitian 

and hence they are square matrices (n × n). Since squares of all four matrices are unity, their 

eigenvalues are +1 and −1.  

If we choose β to be diagonal, then αi cannot be diagonal as they anti commute with β. In 

two dimensions, we have three Pauli matrices which anti commute with each other but the fourth 

linearly independent matrix that we can have in 2D is the identity matrix which commutes with 

all other matrices.  

So, we cannot find a linearly independent fourth matrix to anti commute with the Pauli 

matrices. Similarly, we fail to find four 3 × 3 matrices to satisfy all the above conditions. The 

smallest possible dimension to have four such matrices is 4 × 4. One such set of matrices are: 
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where  i are the Pauli matrices and I is 2 × 2 identity matrix. 

 

αi and β are not unique. All matrices related to these matrices by any unitary 4 × 4 matrix 

are equally valid i.e., 

 

3.3 Plane Wave Solutions: 

The space-time behaviour is of plane wave form: 

                                 
   

           
   

 
   

          

                         -----(1) 

where ω is a 4-component vector, independent of x and is called the Dirac spinor. Let us 

write ω in 2-component notation 

                   ----(2) 

Where φ and χ are 2 - component spinors. Putting the solution in the Dirac equation  we 

get 

  -----(3) 

The matrix equation can be written as two coupled equations: 

 -----(4) 
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  -----(5) 

Putting Eq.(5) in Eq.(4) we have  

 

where we have used 

                                       + I                     

               = (       

So finally we get, 

(E – mc
2
 )( E + mc

2
)   =  p

2 
c

2     =     =             

i.e., E = ±              which means negative energy solutions are still admitted. Dirac’s 

prescription cannot get rid of the negative energy solutions. 

 

3.4 Interpretation of Negative Energy States: 

The physical interpretation of positive energy solutions is straight forward. They describe 

spin- 1 / 2 particles with 4-momentum. 

The probability density ρ and the probability current    both are positive definite. But 

since the negative energy solutions are also allowed, like KG equation, a particle with +ve 

energy can cascade down through the -ve energy levels without limit.  

Hence +ve energy states cannot be stable! To make any sense of Dirac equation, one then 

needs to make the +ve energy states stable, preventing them to make transition to -ve energy 

states. Here comes the masterclass of Dirac. 
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 Dirac postulated that the normal empty or vacuum state corresponds to the state with no 

positive energy particle and all the negative energy states are completely filled up. 

 The state with completely filled up negative energy levels is called the Dirac sea. Since 

Dirac equation describes fermions, according to Pauli exclusion principle only two electrons(one 

spin up and one spin down) can occupy an energy level and once they are occupied any +ve 

energy particle is forbidden to fall in the -ve energy levels. 

 Let us assume that the spin 1/2 particle we are talking about is an electron. So, the 

vacuum is the state where all negative energy levels are filled up by electrons i.e., has infinite 

negative charge and energy. 

 But since all observations represent finite fluctuations of charge and energy with respect 

to the vacuum, it leads to an acceptable theory and we rescale the vacuum to be without any 

charge and energy (charge of the vacuum=0, energy of the vacuum=0, spin of the vacuum=0). 

Assume an electron with energy −E and spin up is removed from the Dirac sea.  

It will create a "hole" relative to the normal vacuum: 

energy of the "hole" = −(−E) = +E → positive 

 charge of the "hole" = −(−e) = e → positive charge. 
spin of the "hole"=-(up)= down 

Thus the absence of a negative energy electron with spin up is equivalent to the presence 

of a positive energy and positively charged "hole" with spin down.  

So, "hole" represents the antiparticle of the electron (i.e, positron). So, the unfilled 

negative energy states according to Dirac, represent positive energy antiparticles.  

Thus in order to give stability to the +ve energy states, Dirac predicted the existence of 

positron. 

 

 

3.5 Antiparticles: 

Antiparticle, subatomic particle having the same mass as one of the particles of ordinary 

matter but opposite electric charge and magnetic moment.  

Thus, the positron (positively charged electron) is the antiparticle of the negatively 

charged electron. The spinning antineutron, like the ordinary neutron, has a net electric charge of 

zero, but its magnetic polarity is opposite to that of a similarly spinning neutron. Neutrino, an 

https://www.britannica.com/science/subatomic-particle
https://www.britannica.com/science/electric-charge
https://www.britannica.com/science/positron
https://www.britannica.com/science/electron
https://www.britannica.com/science/antineutron
https://www.britannica.com/science/neutron
https://www.britannica.com/dictionary/polarity
https://www.britannica.com/science/neutrino
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uncharged particle that travels very close to the speed of light, spins counterclockwise as viewed 

from behind, whereas the antineutrino spins clockwise as viewed from behind. A particle and its 

antiparticle mutually react to produce energy by annihilation.  

 

 3.6 Spin of Electron: 

The electron spin is one of the three inherent properties of the electrons; the others are the 

mass and charge of the electron. The electron spin is described as the electron spinning around 

its axis. 

It is articulated as: 

‖S‖=s(s+1)h 

Where, 

 s is equivalent to a quantized spin vector. 

 The spin vector is articulated as ||s||. 

 The spin quantum number (s) is associated with the spin angular momentum and h is 

Planck’s constant. 

A total of four quantum numbers were developed to better understand the movement and 

pathway of electrons in its designated orbital within an atom. 

1. Principal quantum number (n): energy level n = 1, 2, 3, 4, ... 

2. Orbital Angular Momentum Quantum Number (L): shape (of orbital) L = 0, 1, 2, 3, ...n-1 

3. Magnetic Quantum Number (mL): orientation mL = interval of (-L, +L) 

4. Electron Spin Quantum Number (ms): independent of other three quantum numbers 

because ms is always = –½ or +½ 

 

 

 

https://www.britannica.com/science/speed-of-light
https://www.britannica.com/science/antineutron
https://www.britannica.com/science/annihilation
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3.7 Magnetic Moment of an Electron Due to Spin: 

We consider the magnetic moment that arises from the spin of the electron. By analogy 

with the orbital magnetic moment, we might expect the spin magnetic moment to be related to 

the spin angular momentum by  μs    S , but this turns out not to be the case. T 

his should not be too surprising however, because spin has no classical analogue, yet here 

we are trying to argue by analogy with orbital angular momentum, which does have a classical 

analogue. 

The relation between the spin and its magnetic moment can be derived from the 

relativistic Dirac equation, which gives  s  2 S : the magnetic moment due to spin is twice the 

value expected on the basis of a classical analogy.  

The experimental value of the magnetic moment can be determined by observing the 

effect of a magnetic field on the motion of an electron beam, and it is found that 

s  g  S 

where g  2.002319 

The factor g is called the g-factor of the electron. The small discrepancy between the 

experimental value and the Dirac value of exactly 2 is accounted for by the more sophisticated 

theory of quantum electrodynamics, in which charged particles are allowed to interact with the 

quantized electromagnetic field. Thus, the magnetic moment due to electron spin can be written 

as 

       
 

    
   

The magnitude of S is equal to            . here s is called spin quantum number. 

Therefore, the absolute value the spin magnetic moment is 

s = g B           =     B 

Thus, the spin magnetic moment of electron is nearly equal to     times the Bohr 

magneton. As for the orbital magnetic moment, the spin magnetic moment has quantized 

components on the z axis, and we write 

       
 

    
               

Where       
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Unit – IV 

DIRAC EQUATION 

Covariant form of Dirac Equation – Properties of the gamma matrices – Traces – 

Relativistic invariance of Dirac equation – Probability Density – Current four vector – Bilinear 

covariant – Feynman ‘s theory of positron (Elementary ideas only without propagation 

formalism) 

 

4.1 Covariant form of Dirac Equation: 

In accordance with the principle of relativity, physics must “look the same” in all Lorentz 

frames. This means that physical theories that are consistent with the principle of relativity must 

have the same form in all Lorentz frames, that is, they must be covariant.  

In this, we examine the covariance of the Dirac equation. In these notes we mainly deal 

with the Dirac wave function ψ, which is understood to be a four-component spinor. But 

occasional reference is made to the scalar Klein-Gordon wave function, which will be denoted 

by ψKG. 

The Dirac equation is, 

                           i     ∂ψ / ∂t =  −I   h  c α ·  ψ + m  c
2  
β ψ.                             ------(1) 

The operator ∂/∂t on the left-hand side is not a Lorentz scalar, because the time t 

represents just one component of the 4-vector x
µ
 = (ct, x). The Dirac equation, as written, is not 

manifestly Lorentz covariant.  

Let us bring all the derivatives over to one side, and write the Dirac equation as 

                                     I h c (  ∂ψ /  ∂(ct)    + α ·  ψ )  = m  c
2  
β  ψ.                 -------(2) 

To put this into covariant form, we multiply through by β, using β
2
 = 1, to obtain 

                                                
  

     
                                               ------(3) 
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The constant operator on the right-hand side, mc
2
 , is a Lorentz scalar, while the operators 

                                                                    ∂
 
µ  = 

 

      
     

  

     
                              ----(4) 

that appear on the left-hand side transform as a covariant vector . 

Therefore we guess that the coefficients that multiply ∂µ on the left-hand side must 

transform as a contravariant 4-vector, so that the entire operator on the left-hand side will be a 

Lorentz scalar. 

To bring this out notationally, we define 

                                                                                           ------(5) 

for i = 1, 2, 3, so that the free particle Dirac equation can be written,                

                                              
   

       
                                           -------(6) 

after cancelling a factor of c. We have written the four matrices defined in Eq. (5) as γ µ, µ = 0, 

1, 2, 3, which we can think of as a 4-vector of Dirac matrices, much as the Pauli matrices   

constitute a 3-vector of matrices. If we introduce the covariant momentum operators, 

                                               
  

       
  

                                                            
  

     
                                          -----(7) 

then the free particle Dirac equation takes on the suggestive form, 

                                  (           )                    =                    0                  ---(8) 

The notation suggests that γ 
µ
 p

µ
 is a Lorentz scalar, but we will not have proven that until 

we see how and in what sense γ µ constitutes a 4-vector.  

To do that, we will have to show that it transforms as a 4-vector under Lorentz 

transformations.  

Moreover, since γ µ is a 4-vector of 4 × 4 matrices, not ordinary numbers, its 

transformation law will not be the same as that of the 4-vectors encountered in classical relativity 
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theory. Instead, as we shall see, it transforms by a four-dimensional generalization of the 

definition of a vector operator in quantum mechanics. 

 

4.2 Properties of the gamma matrices: 

The matrices γ 
µ
, defined by Eq. (5), constitute an alternative version of the Dirac 

matrices α and β, useful when we wish to reveal the covariant aspects of the Dirac equation.  

All the properties of the α and β matrices can be converted into properties of the matrices 

γ µ. Here we list some of them. First, there are the values of the matrices.  

In the usual Dirac-Pauli representation, they are 

 

while in the Weyl representation they are 

 

Next there are the Hermiticity properties. Recall that α and β are Hermitian. This implies 

that γ 
0
 is Hermitian, while γ 

i
 , i = 1, 2, 3, are anti-Hermitian.  

This is easily proved using the properties of the α and β matrices, for example, 

 

where we have used the anticommutation relation, {αi , β} = 0 and β 
2
 = 1. 

 Finally, there are the anticommutation properties of the γ 
µ
, which are easily derived 

from those of α and β. Explicitly, we have 
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4.3 Current four vector: 

In special and general relativity, the four-current (technically the four-current density)
 
 

is the four-dimensional analogue of the current density, with units of charge per unit time per 

unit area.  

Also known as vector current, it is used in the geometric context of four-

dimensional spacetime, rather than separating time from three-dimensional space. 

Mathematically it is a four-vector and is Lorentz covariant. 

Using the Minkowski metric  of metric signature (+ − − −), the four-current components are 

given by: 

 

where: 

 c is the speed of light; 

 ρ is the volume charge density; 

 j is the conventional current density; 

 The dummy index α labels the spacetime dimensions. 

  

4.4 Bilinear covariant: 

The bilinear form 

 

One can construct other bilinear forms ψ Γi ψ, i = 1, 2, . . . 16, which are scalars (V), tensors (T), 

axial vectors (A) and pseudoscalars (P): 

 

 

https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Four-dimensional_space
https://en.wikipedia.org/wiki/Current_density
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Three-dimensional_space
https://en.wikipedia.org/wiki/Four-vector
https://en.wikipedia.org/wiki/Lorentz_covariant
https://en.wikipedia.org/wiki/Minkowski_metric
https://en.wikipedia.org/wiki/Metric_signature
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Volume_charge_density
https://en.wikipedia.org/wiki/Current_density
https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Dimension
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Here 

 

The matrix γ 5 plays an important role especially in the theory of weak interactions. The main 

properties of γ5 are the following: 

 

 

These properties can be checked by direct calculations. In standard representation γ
5
 is of the 

form 

 

 

 4.5 Feynman ‘s theory of positron: 

Feynman used Ernst Stueckelberg's interpretation of the positron as if it were 

an electron moving backward in time.
[3]

 Thus, antiparticles are represented as moving backward 

along the time axis in Feynman diagrams. 

The calculation of probability amplitudes in theoretical particle physics requires the use 

of rather large and complicated integrals over a large number of variables. Feynman diagrams 

can represent these integrals graphically. 

A Feynman diagram is a graphical representation of a perturbative contribution to 

the transition amplitude or correlation function of a quantum mechanical or statistical field 

theory. Within the canonical formulation of quantum field theory, a Feynman diagram represents 

a term in the Wick's expansion of the perturbative S-matrix.  

Alternatively, the path integral formulation of quantum field theory represents the 

transition amplitude as a weighted sum of all possible histories of the system from the initial to 

https://en.wikipedia.org/wiki/Ernst_Stueckelberg
https://en.wikipedia.org/wiki/Positron
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Feynman_diagram#cite_note-Feynman_1949-3
https://en.wikipedia.org/wiki/Antiparticle
https://en.wikipedia.org/wiki/Probability_amplitude
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
https://en.wikipedia.org/wiki/Transition_amplitude
https://en.wikipedia.org/wiki/Canonical_quantization
https://en.wikipedia.org/wiki/Wick%27s_theorem
https://en.wikipedia.org/wiki/S-matrix
https://en.wikipedia.org/wiki/Path_integral_formulation
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the final state, in terms of either particles or fields. The transition amplitude is then given as the 

matrix element of the S-matrix between the initial and final states of the quantum system. 
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Unit – V 

CLASSICAL FIELDS AND SECOND QUANTIZATION 

Classical fields – Euler Lagrange equation – Hamiltonian formulation – Noether‘s theorem – 

Quantization of real and complex scalar fields – Creation, Annihilation and Number operators – 

Fock states – Second Quantization of K-G field. 

 

5.1 Classical fields – Euler Lagrange equation: 

Considering a field or set of fields φ(x), where x is the space time position. The 

Lagrangian is a functional of φ(x) and its derivatives 

                                                   
      

       
                                    ----(1) 

Here φ(x) can be a set of fields with an internal index i, such that  

                                                          φ(x) = { φi (x)}                              ----(2) 

We will start with the Lagrangian formulation.  

We define the Lagrangian density  L(φ(x), ∂µφ(x)) by 

                                                          L =    
3
xL(φ(x), ∂µφ(x))                    ------(3) 

In this way the action is  

                                                      S =      L  

                                                        =   4
 x L ( φ(x),  ∂µ φ(x)  )                  ----(4) 

where we are again using the Lorentz invariant spacetime volume element  

                                                         d
4
 x = dt d

3
x .                                  -----(5) 

From (4) is clear that L must be Lorentz invariant.  
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In addition, L might also be invariant under other symmetries of the particular theory we 

are studying. These are generally called internal symmetries and we will study them in more 

detail later in this lecture, and a lot more in the rest of the course. 

 We now wish to vary the action in (4) in order to find the extremal solutions and obtain 

the equations of motion, just as we did in the case of a system of N particles. Here we get 

 

But, analogously to what we did in the previous section, we have that 

                                          δ(∂µφ) = ∂µ(δφ) 

Then, the variation of the action is 

 

In the second line, we have integrated by parts.  

The last term is a four-divergence, i.e. a total derivative. Since the integral is over the 

volume of all of spacetime, the resulting (hyper-) surface term must be evaluated at infinity.  

But just as in the case of N particle dynamics, the value of the field variation at these 

extremes is δφ = 0. Thus, the (hyper-) surface term in (above equation) does not contribute. Then 

imposing δS = 0, we see that the first term in (above equation) multiplying δφ must vanish for all 

possible values of δφ. We obtain 

 

which are the Euler-Lagrange equations, one for each of the φi(x), also known as equations of 

motion 
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5.2  Hamiltonian formulation: 

If now we want to go to the Hamiltonian formulation, we start by defining the 

canonically conjugated momentum by 

 

 

which results in the momentum density 

 

Here π(x) is the momentum density canonically conjugated to φ(x). Then the Hamiltonian is 

given by 

 

which leads to the Hamiltonian density 

 

where we must remember that we evaluate at a fixed time t, i.e. x = (t, x) for fixed t. The 

Lagrangian formulation allows for a Lorentz invariant treatment. On the other hand, the 

Hamiltonian formulation might have some advantages. For instance, it allows us to impose 

canonical quantization rules. 

 

 5.3 Noether‘s theorem: 

In addition to being invariant under Lorentz transformations, the Lagrangian density L 

can be a scalar under other symmetry transformations.  
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In particular, when the symmetry transformation is continuous, we can express it as an 

infinitesimal variation of the field φ(x) that leaves the equations of motion invariant. Let us 

consider the infinitesimal transformation  

 

where     is an infinitesimal parameter. The change induced in the Lagrangian density is 

 

where we factorized   for convenience in the second term. This term can be written as 

 

 

The first term is vanishes when we use the equations of motion. The last term is a total 

derivative so it does not affect the equations of motion when we minimize the action. We can 

take advantage of this fact and define 

 

 

such that its four-divergence 

 

 up to terms that are total derivatives in the action, and therefore do not contribute 

if we use the equations of motion. We call this object the conserved current associated with the 

symmetry transformation. 
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5.4 Quantization of real and complex scalar fields: 

The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = 

Φ(˙ x) as operators which satisfy canonical commutation relations. This is completely analogous 

to the transition from classical to quantum mechanics for discrete systems, where qi and pi are 

promoted to self-adjoint operators that satisfy 

 

 

 

These relations hold in the Schrodinger picture where the time dependence is carried by the 

states alone; in the Heisenberg picture the operators are time-dependent and the commutation 

relations are imposed at equal times. In the following we will always work in the Heisenberg 

picture, so we demand that for equal times 

 

 

 

Despite appearances, this does not destroy Lorentz covariance because x and y are separated by a 

spacelike distance (x − y) 
2
 < 0 which is preserved under a Lorentz transformation. By virtue of 

the Dirac delta function, Φ(x) and Π(x) are now operator valued distributions; to arrive at well-

defined expressions one should in principle ‘smear’ them with smooth test functions. 

 

 5.5 Creation, Annihilation and Number operators: 

In quantum mechanics the number of particles is fixed. We may work with 1 particle. Or 

with 2 particles. Or with 3. When say something like “consider a system of N spins”, the number 

of particles was fixed at N. The jump to second quantization is quite simple: we lift this 

constraint and assume that the number of particles may fluctuate.  
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To describe this, we introduce creation and annihilation operators, similarly to what we 

do in the case of the harmonic oscillator, but which create or annihilate actual particles. This is 

the reason why we need single-particle states: these operators create and annihilate particles in 

single-particle states. 

 

 

5.6 Bosons and Fermions: 

Things become more interesting when we create multiple particles. Second quantization 

is specifically designed to describe identical particles. In 1940 Wolfgang Pauli published a paper 

entitled “The connection between spin and statistics” where he shows that, as a consequence of 

the Lorentz group of special relativity, identical particles can behave in one of two ways. Bosons 

are symmetric with respect to creation of two particles: 

 

--------(1) 

whereas Fermions are anti-symmetric: 

 

 -----(2) 

In the case of Bosons, due to (1), we can move the states around at will:  

                                         |1β, 1α | = |1α, 1β |.  

For Fermions, however, every time we move the states around we get a minus sign: 

                                                     |1β, 1α | = −|1α, 1β |. 

Pauli also showed that Bosons and Fermions have different spin values: Bosons’ spins are 

integer valued (0,1,2,. . .) whereas Fermions’ spins are half-integers (1/2, 3/2, . . .). In the case of 

Fermions, in particular, if we set β = α in Eq. (2) we see that 

 

----(3) 
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This is the Pauli exclusion principle: it is forbidden to create two fermions on the same 

single-particle state | α |. Eq. (3) implies that bosonic creation and annihilation operators should 

commute: 

 

 

 fermionic operators should anti-commute: 

 

 

5.7 Fock states: 

We have found that the quantized free electromagnetic field is an infinite collection of 

uncoupled harmonic oscillators, each of which is described by a Hamiltonian 

   

 

We will now concentrate on the quantum states of light. The eigen value problem for 

 

is solved by considering the eigenvalue problem for the number operator since 

 

The solution is known from quantum mechanics, and we will briefly review it here. The 

eigenvalue equation reads 

 

where n is the eigenvalue of ˆn and  the corresponding eigenvector. The number operator 

 

is an Hermitian operator, therefore its eigenvalues n are real and its eigenvectors  form a 

complete set of orthogonal states. Writing 
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If we apply the commutation relation, we find that 

 

This state will be called the ground state. It contains no excitation, and thus no quantum can be 

further annihilated. Similarly, we find that 

 

 

 

We assume that the ground state (or vacuum state)  is already normalized. Then, we create the 

nth Fock state by 

 

 

where we have yet to determine the normalization constants cn. This is done by looking at the 

normalization condition 

 

We then calculate 

 

 

and use the commutation rule 

 

to obtain 
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from which it follows that 

 

Collecting all the results, we find that 

 

 

Similarly, we find that 

 

 

As mentioned before, the eigenvectors of the number operator are mutually orthogonal, hence 

 

 

 

and they form a complete set of orthonormal vectors, hence 

 

 

where ˆI is the identity operator in the Hilbert space of the single-mode system. 
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5.8 Second Quantization of K-G field: 

We can write the Klein-Gordon field operator as 

 

where 

 

and k0 = Ek. The field operator satisfies the Klein-Gordon equation, i.e. 

 

This can be split into positive and negative energy components as follows:  

 

 

 

The conjugate momentum for the field operator is therefore 

 

Inverting equations 1 and 5 and solving for the annihilation and creation operators a and a† : 
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Taking the time derivative of equation 6: 

  

 

 

must satisfy the Klein-Gordon equation, so 

 

 To reduce clutter, we define 
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The commutation relations between the annihilation and creation operators can be calculated 

from equations 6 and 7, 

 



Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

                                                                                  50                                                Quantum Mechanics - II 
 

In the last step, we use the fact that k0 = k0. Similarly, we find that 

 

So the creation and annihilation operators commute with themselves for any two k and k0 , but 

do not commute with each other. 


